

UNIVERSITÄTSKOLLEG: #STUDIUM+

Tutorium Makroökonomik I:

1. Grundlagen und lineare Gleichungen

Dr. Kristin Paetz Tobias Fischer

KOSTENLOSE ZUSATZANGEBOTE UND LEHRMATERIALIEN FÜR ALLE STUDIERENDEN

Tutorium Makroökonomik I: 1. Grundlagen und lineare Gleichungen

Ziel: Gleichungen nach einer Variablen umstellen und/oder lösen **Mathematische Grundlagen:** Vorkurs ab Folie 20, Kapitel 1 & 2 im Buch¹

Aufgabe 1 (vgl. Kapitel 1.4) - Brüche analysieren

Geben Sie an, ob der Bruch größer oder kleiner als 1 ist (0 < c < 1)

1.
$$\frac{1}{c}$$

3.
$$\frac{1}{1-c}$$

5.
$$\frac{1-\alpha}{1+\alpha}$$

2.
$$\frac{1}{1+c}$$

4.
$$\frac{c}{1+c}$$

6.
$$\frac{1}{1-c(1-t)}$$
, mit $0 < t < 1$

Aufgabe 2 (vgl. Kapitel 1.3) - Faktorisierung

Zerlegen Sie die gegebenen Ausdrücke in Faktoren

1.
$$6x - 3y$$

5.
$$x - c_1 x + c_1 t_1 x$$

2.
$$10x + 5x \cdot x$$

$$6. Y - tY - sY + stY$$

3.
$$Y_t - c_1 Y_t$$

7.
$$P_t^e + P_t^e \mu - \alpha u_t P_t^e - \mu \alpha u_t P_t^e$$

4. Ya + Yb + Y

Aufgabe 3 (vgl. Kapitel 2.1) - Gleichungen lösen

Lösen Sie die Gleichungen (nach x oder Y)

1.
$$x + 2 = 13 - 5x$$

6.
$$Y = I + a(Y - (c + bY))$$

2.
$$Y = (500 + 0.8Y) + 100$$

7.
$$(1-t)(Y-sY) = 500$$

3.
$$Y = 94 + 0, 2(Y - (20 + 0, 5Y))$$

5.
$$C = 0.15 + 0.14Y$$

4. aY - a = bY - b

(b) für
$$t = 0, 2, s = 0, 4$$

Aufgabe 4 (vgl. 2.2, 2.4 (Methode 1)) - Einsetzen und umformen

Lösen Sie nach der jeweils angegebenen Variable

¹Sydsæter, Hammond und Strøm, Mathematik für Wirtschaftswissenschaftler, Pearson, 2015 Weitere Aufgaben finden Sie hier sowie im Übungsbuch der Makroökonomie: Forster, Klüh und Sauer, Makroökonomie - Das Übungsbuch, Pearson, 2014

$$\label{eq:continuous} \begin{array}{lcl} \mbox{1.} & Y & = & C_0 + I \\ & I & = & 0, 5 + 0, 2Y \end{array} \ \mbox{nach} \ Y$$

$$Y = C_0 + I + G$$

2.
$$I = 0.1Y$$
 nach Y $G = G_0 - 0.05Y$

$$\begin{array}{lcl} \textbf{3.} & Y & = & C+I+G \\ C & = & 100+0, 6(Y-T) \end{array} \ \ \text{nach} \ Y \end{array}$$

(a) allgemein

(b) mit
$$I = T = G = 500$$

(c) mit
$$I = T = 500, G = 501$$

(d) mit
$$I = 500, T = G = 0,25Y$$

$$C = c_0 + c_1 Y_V$$

4.
$$T = t_0 + t_1 Y$$

$$Y_V = Y - T$$

- (a) nach C
- (b) nach Y

Aufgabe 5 (vgl. 2.2, 2.4 (Methode 1)) - Gleichungssysteme lösen

Lösen Sie nach i

$$H^d = \theta M^d$$

$$M^d = Y(0, 8 - 4i)$$

1.
$$\theta = 0.2$$

1.
$$\theta = 0.2$$

 $Y = 5.000.000$

$$H^d = 200.000$$

$$Y = C + I + 250$$

$$C = 200 + 0,25Y_V$$

$$I = 150 + 0.25Y - 1.000i$$

2.
$$T = 200$$

$$Y_V = Y - T$$

$$\frac{M}{P} = 2Y - 8.000i$$
 $\frac{M}{P} = 1.600$

$$\frac{M}{P} = 1.600$$

Zusatzaufgaben

1. Brüche analysieren

Geben Sie an, ob der Bruch größer oder kleiner als 1 ist (0 < c < 1)

(a) $\frac{1+c}{1+c}$

(c) $\frac{1}{c-1}$

(e) $\frac{-1}{c-1}$

(b) $\frac{1+c}{1-c}$

(d) $\frac{c-1}{1-c}$

(f) $\frac{1}{c+\theta(1-c)}$, mit $0 < \theta < 1$

2. Faktorisierung

Zerlegen Sie die gegebenen Ausdrücke in Faktoren

- (a) xy y
- (b) $x^2 c_1 x$
- (c) 5x + y5 + ax + ya
- (d) $\frac{a}{b}C C C^2$

- (e) $K_t + K_t r_t$
- (f) $5x^2 + 15x$
- (g) $P_t^e + P_t^e \mu \alpha u_t P_t^e \mu \alpha u_t P_t^e + z_1 P_t^e + z_1 P_t^e \mu$

3. Gleichungen lösen

Lösen Sie die Gleichungen (nach x oder Y)

- (a) 4Y + 1 = 2Y + 17
- (b) 100 = ab(0, 2 x)
 - i. allgemein
 - ii. mit ab = 1000

- (c) $Y = c_0 + c_1 Y + b_0 + b_1 Y + g_0 g_1 Y$
 - i. allgemein
 - ii. für $c_0 = 500$, $c_1 = 0$, 6, $b_0 = 200$, $b_1 = 0.05$, $g_0 = 400$, $g_1 = 0.1$

4. Einsetzen und umformen

Lösen Sie nach der jeweils angegebenen Variable.

$$\begin{array}{rcl} Y&=&Z\\ \text{(a)}&Z&=&C+I+G\\ C&=&c_0+c_1(Y-T)\\ I&=&b_0+b_1Y \end{array} \text{ nach } Y$$

$$\begin{array}{rcl} \frac{W}{P^e} & = & z[(1-u)L]^2 \\ \text{(b)} & u & = & \frac{L-N}{L} & \text{nach } \frac{W}{P^e} \\ & z & = & 2 \end{array}$$

$$\begin{array}{rcl} H^d & = & CU^d + R^d \\ \text{(c)} & CU^d & = & cM^d & \text{nach } H^d \\ R^d & = & \theta(1-c)M^d \end{array}$$

$$\begin{array}{rcl} \mbox{(d)} & Y & = & cY+I-\rho i+G \\ M & = & kY+\theta i \end{array} \ \mbox{nach} \ i$$

Zusatzaufgaben - Lösung

1. Brüche analysieren

(a)
$$= 1$$

(d)
$$< 1$$

(f)
$$\frac{1}{c(1-\theta)+\theta} = \frac{1}{<1} > 1$$

(b)
$$\frac{>1}{<1} > 1$$

(c)
$$-\frac{1}{1-c} < 1$$

(e)
$$\frac{1}{1-c} > 1$$

2. Faktorisierung

(a)
$$y(x-1)$$

(b)
$$x(x-c_1)$$

(c)
$$(5+a)(x+y)$$

(d)
$$C(\frac{a}{b} - 1 - C)$$

(e) $K_t (1 + r_t)$

(f)
$$5x(x+3)$$

(g) $P_t^e(1+\mu)(1-\alpha u_t+z_1)$

3. Gleichungen lösen

(a)
$$Y = 8$$

(b) i.
$$x = 0, 2 - \frac{100}{ab}$$

ii. $x = 0, 1$

(c) i. $Y = \frac{1}{1-c_1-b_1+g_1}\left(c_0+b_0+g_0\right)$ ii. Y = 2444,44

4. Einsetzen und umformen

(a)
$$Y = \frac{1}{1-c_1-b_1} (c_0 + b_0 - c_1 T + G)$$

(b)
$$\frac{W}{P^e} = 2 \left[\frac{L-L+N}{L} L \right]^2 = 2N^2$$

(c)
$$H^d = M^d (c + \theta(1 - c))$$

(d) Man kann entweder beide Gleichungen nach Y auflösen und gleichsetzen oder eine Gleichung nach Y auflösen und in die andere einsetzen. Hier Lösung über den ersten Ansatz:

$$\frac{1}{k}(M-\theta i) = \underbrace{\frac{1}{1-c}(I-\rho i+G)}_{Y}$$

$$\Leftrightarrow -\frac{\theta}{k}i + \frac{\rho}{1-c}i = \frac{1}{1-c}(I+G) - \frac{M}{k}$$

$$\Leftrightarrow i\left(\frac{k\rho-\theta(1-c)}{k(1-c)}\right) = \frac{1}{1-c}(I+G) - \frac{M}{k}$$

$$\Leftrightarrow i = \frac{k(1-c)}{k\rho-\theta(1-c)}\left(\frac{1}{1-c}(I+G) - \frac{M}{k}\right)$$

$$\Leftrightarrow i = \frac{1}{k\rho-\theta(1-c)}\left(k(I+G) - M(1-c)\right)$$

Hauptteil - Lösung

Aufgabe 1 - Brüche analysieren

5.
$$\frac{\leq 1}{>1} < 1$$

4.
$$=\frac{1}{\frac{1}{c}+1} < 1$$

Aufgabe 2 - Faktorisierung

1.
$$3(2x - y)$$

2.
$$5x(2+x)$$

3.
$$Y_t (1-c_1)$$

4.
$$Y(a+b+1)$$

5.
$$x(1-c_1(1-t))$$

6.
$$Y(1-s)(1-t)$$

7.
$$P_t^e(1+\mu)(1-\alpha u_t)$$

Aufgabe 3 - Gleichungen lösen

1.
$$x = \frac{11}{6} = 1,8333$$

2.
$$Y = 3000$$

3.
$$Y = 100$$

4.
$$Y = 1$$

5.
$$Y = -\frac{15}{14} + \frac{1}{0.14}C$$

6.
$$Y = \frac{1}{1-a+ab}(I-ac)$$

7. (a)
$$Y = \frac{500}{(1-t)(1-s)}$$

(b)
$$Y = 1041, 67$$

Aufgabe 4 - Einsetzen und umformen

1.
$$Y = \frac{1}{0.8} (C_0 + 0.5)$$

2.
$$Y = \frac{1}{0.95} (C_0 + G_0)$$

3. (a)
$$Y = \frac{1}{0.4} (I + G - 0.6T + 100)$$

(b)
$$Y = 2000$$

(c)
$$Y = 2002, 5$$

(d)
$$Y = 2000$$

4. (a)
$$C = c_0 + c_1 (Y (1 - t_1) - t_0)$$

(b)
$$Y = \frac{1}{c_1(1-t_1)} (C - c_0 + c_1 t_0)$$

Aufgabe 5 - Gleichungssysteme lösen

1.
$$i = 0, 15$$

2.
$$i = 0.05$$